2.5-D poroelastic wave modelling in double porosity media

نویسندگان

  • Xu Liu
  • Stewart Greenhalgh
  • Yanghua Wang
چکیده

S U M M A R Y To approximate seismic wave propagation in double porosity media, the 2.5-D governing equations of poroelastic waves are developed and numerically solved. The equations are obtained by taking a Fourier transform in the strike or medium-invariant direction over all of the field quantities in the 3-D governing equations. The new memory variables from the Zener model are suggested as a way to represent the sum of the convolution integrals for both the solid particle velocity and the macroscopic fluid flux in the governing equations. By application of the memory equations, the field quantities at every time step need not be stored. However, this approximation allows just two Zener relaxation times to represent the very complex double porosity and dual permeability attenuation mechanism, and thus reduce the difficulty. The 2.5-D governing equations are numerically solved by a time-splitting method for the non-stiff parts and an explicit fourth-order Runge-Kutta method for the time integration and a Fourier pseudospectral staggered-grid for handling the spatial derivative terms. The 2.5-D solution has the advantage of producing a 3-D wavefield (point source) for a 2-D model but is much more computationally efficient than the full 3-D solution. As an illustrative example, we firstly show the computed 2.5-D wavefields in a homogeneous single porosity model for which we reformulated an analytic solution. Results for a two-layer, water-saturated double porosity model and a laterally heterogeneous double porosity structure are also presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral-element simulations of wave propagation in porous media

S U M M A R Y We present a derivation of the equations describing wave propagation in porous media based upon an averaging technique which accommodates the transition from the microscopic to the macroscopic scale. We demonstrate that the governing macroscopic equations determined by Biot remain valid for media with gradients in porosity. In such media, the well-known expression for the change i...

متن کامل

Nonlinear Effects in Sea Sediments

a) Develop the nonlinear acoustic theory of poroelastic media using Biot’s semilinear model and physical model of contact nonlinearity, b) Measure the nonlinear parameter of sediments in laboratory tank, c) Study the effect of sediment parameters (grain size distribution, free gas content, porosity) on nonlinear acoustic properties of the sediments, d) Evaluate the nonlinear absorption and dist...

متن کامل

Variational Principle and Plane Wave Propagation in Thermoelastic Medium with Double Porosity Under Lord-Shulman Theory

The present study is concerned with the variational principle and plane wave propagation in double porous thermoelastic infinite medium. Lord-Shulman theory [2] of thermoelasticity with one relaxation time has been used to investigate the problem. It is found that for two dimensional model, there exists four coupled longitudinal waves namely longitudinal wave (P), longitudinal thermal wave (T),...

متن کامل

Modelling of Water Flow and Solute Transport in Double Porosity Unsaturated Media: Theory, Two-scale Computations and Experiments

“Multi-scale, multi-components, multi-phases” are the key words that characterize the double porosity media, like fissured rocks, aggregated soils or composite geomaterials, subject to environmental conditions. In relation to this context an integrated upscaling approach to the modelling of water flow and solute transport under unsaturated conditions in double porosity media, is presented. The ...

متن کامل

Double Porosity Models for Liquid Filtration in Incompressible Poroelastic Media

Double porosity models for the liquid filtration in a naturally fractured reservoir is derived from the homogenization theory. The governing equations on the microscopic level consist of the stationary Stokes system for an incompressible viscous fluid, occupying a crack-pore space (liquid domain), and stationary Lame equations for an incompressible elastic solid skeleton, coupled with correspon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011